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Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results
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Equilibrium molecular dynamics simulations have been carried out in the microcanonical ensemble at 300
and 255 K on the extended simple point cha§EC/B model of watefBerendseret al,, J. Phys. Chen®1,
6269 (1987)]. In addition to a number of static and dynamic properties, thermal conduchvligs been
calculated via Green-Kubo integration of the heat current time correlation fun¢tffis) in the atomic and
molecular formalism, at wave numb&=0. The calculated value®.67+0.04 W/mK at 300 K and 0.52
+0.03 W/mK at 255 K are in good agreement with the experimental daté1 W/mK at 300 K and 0.49
W/mK at 255 K). A negative long-time tail of the heat current CF, more apparent at 255 K, is responsible for
the anomalous decrease »fwith temperature. An analysis of the dynamical modes contributing has
shown that its value is due to two low-frequency exponential-like modes, a faster collisional mode, with
positive contribution, and a slower one, which determines the negative long-time tail. A comparison of the
molecular and atomic spectra of the heat current CF has suggested that higher-frequency modes should not
contribute to\ in this temperature range. Generalized thermal diffusibiffk) decreases as a function lof
after an initial minor increase &=Kk,,. Thek dependence of the generalized thermodynamic properties has
been calculated in the atomic and molecular formalisms. The observed differences have been traced back to
intramolecularor intermolecularrotational effects and related to the partial structure functions. Finally, from
the results we calculated it appears that the SPC/E model gives results in better agreement with experimental
data than the transferable intermolecular potential with four points TIP4P water fimigknseret al,, J.
Chem. Phys79, 926 (1983], with a larger improvement for, e.g., diffusion, viscosities, and dielectric prop-
erties and a smaller one for thermal conductivity. The SPC/E model shares, to a smaller extent, the insufficient
slowing down of dynamics at low temperature already found for the TIP4P water model.
[S1063-651%97)06009-1

PACS numbgs): 61.20.Ja, 61.25.Em, 66.60a, 67.55.Fa

[. INTRODUCTION with the extended simple point charge SPCAEmodel will

be compared to that relevant to the TIP4P model. The latter

In two recent paper§l,2] some collective dynamical Performs well for a number of equilibrium and dynamic
properties of liquid water, modeled by the transferable interProperties at ambient temperature, but its behavior in the
molecular potential with four points TIP4F3] potential supercooled region as far as the above mentioned collective

have been computed by molecular dynanm(tD) simula-’ dynamical properties is concerned is still to be determined.
tion and analyzed in the framework of generalized hydrody-Ii qmgenag‘?rgiiggﬁ?g,h )écrirgﬁy{?:trgrlﬁ%[sfgmgigr;o gﬂlegeu lar

namics. In particular, generalized viscosity and rigidit ; ; - ;
moduli have geen studiegd 2], where the cc%tributiongto yadopted. In the molecular formalism a single phase factor is

) . ; employed for each molecule, with the coordinate of the cen-
these properties of the different dynamical modes of watefe ot mass, whereas in the atomic one each atom yields its

(O-O-Obending, 8-10 THz, stretching, or cage, 45-50qyn contribution to the computed property, modulated by its
THz, and librational modes 90-170 TH&as also been ob- oyn phase factor. In the—0 limit, both formalisms lead to
tained. This has allowed illustration of the prominent rolethe same results, however, tkedependence of the results
of the cage mode in determining viscosity and rigidity can be significantly different. Both these approaches will be
moduli, while the librational mode contribution to rigidity employed here to calculate various generalized thermody-
moduli is minor and that to viscosity negligible. namic properties, namely, constant pressure and volume heat
In this paper we extend this approach to the study otapacity,cp(k) andcy(k), thermal expansivitye(k), and
generalized thermal conductivity, also to analyze the con- enthalpy per moleculédy(k). Moreover, intramoleculafself)
tribution of the different dynamical modes to this property. contributions to these properties will be computed to gain
This is done by calculating the time correlation functi@¥)  further insight, e.g., into the relative effects of rotational and
of the energy flux as well as the density-density, energytranslational motions.
density, and energy-energy CF’'s at a numbekofalues. This paper is organized as follows. A brief outline of the
The latter three functions are the key ingredients to the gertheoretical approach used to analyze the simulation results is
eralized hydrodynamics theory. Further, the results obtainegdiven in Sec. Il. The MD results of are presented in Sec.
Il A and compared with the experimental data; in Sec. Il B
the dynamical modes contributing ®o are discussed and
*Author to whom correspondence should be addressed. Sec. Il C extends this analysis to finike Generalized ther-
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modynamics parameters are reported and discussed in SeG.(k,t)
[l D and the very-highk dynamics in Sec. lll E. The main

results and conclusions are summarized in Sec. IV. [(vzs(k))zlz . 2V25(k) ek _n }
- b+ 't
B V22( k) 22( ) V22( k) 25( ) 55( )
Il. THEORETICAL BACKGROUND = Vou(K)2 ,
V -
The approach adopted in this paper has been described in ( (k) VoK) )

detail elsewhergl,2,5] so we only recall here the results and (2.9

relations required for the discussion in the following. The ~

theory is based on a set of time correlation functionswhich is related taNy(k,z) by

Fij(k,t), where the indices,j(=1-5) label density, longi- ~

tudinal velocity, energy, stress tensor, and longitudinal heat Gek2)= Nq(k,2) R @27

flux, respectively. A set of orthonormal linear combinations S5t 124k z+Ng(k,2)’ '

of the CF'sFj;(k,t), Gjj(k,t) is also introduced which fa-

cilitates theoretical analysis and interpretation of results.  so that
Thermal conductivity ak=0 can be obtained from the

Green-Kubo relation

74k 2Gsdk,2)

Dr(k,2)= ‘
o= T T2 (0B k2

(2.9

pM [
(at.,m) _ (at.,m)
A kgT? Jo Fos 7 (01)dt (2D |t should be noted that this route i(k) is not independent

from the other and that Eq$2.4) and (2.5 and Egs.(2.7)
for both atomic (at) and molecular if) expressions of @nd (2.8 hold only wheny=cp/cy=1 and the coupling
Fe5(0t). This relation, however, cannot simply be extendedbetw_e_e” stress tensor ar_1d_ hea_t flux can be neglected. These
to k>0 to calculate a generalized thermal conductivity, be-conditions are well satisfied in water at least up Ko

— -1 . .
cause of the conservation law that linkss(k,t) to Fay(k,t) — — 1 A~ More general expressions can be found in iREf.
[2,5], Hence a generalized thermal conductivity can be obtained

from
1 9°Fayk,t ~ ~
CRAL AL 22 N(K,2)=poy(K) Dr(k,2). 29

At k=0 constant volume heat capacity can be obtained, in
which would lead to a zero value &f k), via an integral like a “microcanonical” MD, from the fluctuations of kinetic

Fss(k,t)=—

Eq. (2.2). energy[6]:
Rather, one can obtain(k) from the generalized thermal
diffusivity D(k) throughGas(k,t), o 3R (2.10
VU 1-3(N/T?)(AT?) '
Gag(k,t) _ _
Moreover, as in1], generalized enthalply(k), constant
Vio(k)\2 Vis(K) volume and pressure heat capacity(k) andcp(k), their
[( = ) Fra(kt) =2 Fls(kvt)+F33(k,t)} ratio y(k), and the thermal expansivity(k) can be obtained
_ Via(k) Via(k) from the initial valuesv;; (k) of theF;;(k,t) according to the
(V (K) V13(k)2) ' following relations[5,7], derived for a simple atomic fluid:
33 - V.(K
11(K) 23 ol h(k)Vlik;Z_VB(k)’ (211
B

whereV;; (k)=F;;(k,0), defining Ve k) ViV ar(K)
== (12

D-(k)=lim D(k,2)=1i No(k.2) l !
=lim ,2)=1lim =lim ,
T z—0 T z—0 k2 z—0 k2633(k,2)

[h(k)V1x(k) = V1K) ]2

2.4 =
29 YO Y I0Vago VgV @12
as, from generalized hydrodynamics, where
=7+ Ng(k,2) =2+ P2 (K)Tig(k,2). (2. _ Vask) _ Vau(k)
Cak.2) z q( z)=z2 Tq( )nq( z) (2.9 hk_V22(k)_V22(k)' (2.14

In Eq. (2.5 ﬁq(k,z) is the spectrum of the memory kernel of  To understand th& dependence of these properties, it is
Gag(k,t) andfr4(k) is the corresponding characteristic fre- necessary to calculate the sef)(contribution to the coeffi-
guency[1]. cientsV;;(k) that appear in Eqg2.11)—(2.14).

Alternatively, one can us€s5(k,t), defined as For the density-density correlation one has



Sm)__
vEm=1,

2

2
my . Mo
V(K =27 [1+jo(Kru) 1+ 1z +4

mym,
MZ

Mzo jo(Krop).
(2.15

For the density energy
ViE™=2(Ey) +(Eo),

VS (k) =2 0 (E1+ ok 1+ 1 (Eo)

Mo my .
+2 ™ (Ew+ ™ (Eo) |jo(Kron),

(2.1
and for the energy energy

V5™ =A+Apy+ Aok,
V5320(K) = A+ A o(Krn) + Aouj o(Krop), (2.17)
where
A=2[(Ef) —(En)’1+(E5) —(Eo)?,
Aun= 2[<EH1EH2> - <EH1><EH2>]a

Aon=4[(EHEo) —(En)(EQ)]. (2.18

For the longitudinal current we obtain

kgT
(smy_"B
V22 M ’

kgT . .
™M [B+Bunjo(Kryn) + Chpj2(Kryp)

+ Bonjo(Kron) + Corj2(Kron) ]

Vas*(k)=
(2.19

The coefficientsB, By, Cuy: Bon, andCgy can be ob-
tained as described in Ref8, 9]. Analogously, one has for
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my [/ [k 2 K 2
DHZZV <(E “VH EH>_<(E 'VH) ><EH> ,
mo [/ [k 2 k 2
ST
(2.2)
my k 2 2
DHH(k):V< Br| ¢ "V, TEmy| 1 Vh

xcos{k-(rHl—rH2>]>,

my 2

DOH(k)=2<[ M

k Mo k 2
EOE'VH +VEH E'Vo

><cos{k-(ro—rH)]>.

In Egs.(2.19—-(2.2)) j, andj, are the spherical Bessel func-
tions of order 0 and 2E; is total energy of atonj, andE
=3,E; total energy of the molecule. A result analogous to
Eqg. (2.19 can be derived from Eg2.21) and we omit de-
tails here.

Notice that forces, which give by far the largest contribu-
tion to F34(k,t) atk=0, are absent in Eq2.21), while they
are the dominant term of the collective or crg€s part. The
latter, in the molecular formalism, is defined by

VM (k)= E-v 2E K-(r,—r
31 (K) K Ve pCOgK-(r,—rp)]

>

a* B

1 [k .
+ W (E -FC,) EBS|r{k'(ra_rB)]> ’

(2.22

whereE; (<0) is total energy of moleculg andF, the
total force acting on molecule. The corresponding atomic
expression contains terms which are analogous to that of Eq.
(2.22), but also, as a new feature, terms related to different
atoms of different molecules, which are dominated by rota-
tional motions. This difference is at the basis of the different
k dependence of generalized enthalp{k)=V3,4/V,, ob-

the amplitude of the coupling between energy and longitudigened with the two formalisms. see Sec. Il D.
nal stress, or longitudinal current-heat flux, which are  thg contribution of the various dynamical modes of water

equivalent as-34(k,t) =F,g(k,t),

{55 o

V52 (k)=Dy+ Do+ Dpp(k) +Don(k),  (2.20

where

to the coefficients of Eqg2.11)—(2.13 is determined by an
analysis of the time dependence of the time correlation func-
tions Fjj(k,t), which, as in Ref[1], are fitted with combi-
nations of complex exponentials. This can be done ug to
~10 A1, when the time dependence becomes Gaussian-
like. In this limit (k— ), we adopted the approach used by
Alley and Alder[10], by averaging over a Maxwellian dis-
tribution of velocities. We obtain for the density-density and
density-energy CF's
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FiT(k—o,t)=exp —at?),
2

Fao(k —2TH expl— aAmut?
11 ( *}Oo,t) Wexq a RHt )

m2

+ M—‘; exp(—aArot?),

(2.23
Fi%(k—,t)=V3™(1-{Pt?) exp —at?),

Fi3'(k—ce.t)
VS, = e 1 VB exp — ahrit?) + (1 asg)
13

X(1— y3%%) exp — aAgot?),

(2.29

where

(2.29

My Epy)
M V(lg at')(oc) ’

a13=

a=(kgT/M)k?/2 and Ary=9.564, Ago=1.0545 are con-
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In the k— limit, the other functionsF,.(k,t), Fa(k,t),
Fog(k,t), andFsg(k,t), can be obtained from Eq&.23 and
(2.24—(2.26) through conservation law$].

IIl. RESULTS AND DISCUSSION

The results presented below have been obtained by mo-
lecular dynamics simulation of a sample of 343 water mol-
ecules in the microcanonical ensemble. The potential
adopted is the modified SPC function, usually referred to as
SPC/E. This potential assumes a tetrahedral geometry for
water, with an OH bond length of 1 A. A short-range
Lennard-Jones term withr=3.1656 A ande =0.65 kJ/mol
acts on the oxygen, while a charge=0.423& is on each
hydrogen, compensated by a charg€q on the oxygen.
The long-range Coulombic part has been treated with the
Ewald sum scheme and with a cutoff distance for the short-
range interactions at half the box side. The equations of mo-
tion have been integrated with the constraint methbd|
with a time step of 2 fs at 300 K and 2.5 fs at 255 K. The
total time spanned after equilibration has been 700 ps at 300
K and 800 ps at 255 K.

The values of some equilibrium and dynamical properties
calculated for the SPC/E model of water are collected in
Table | and compared to the corresponding results for the
TIP4P model from previous worKL,2] and to experimental
data. The viscosity of the SPC/E water model has been ob-
tained with the same procedure adopted@hfor the TIP4P

stants depending on the geometrical parameters of the mo#10del. As can be seen, the overall agreement between cal-

we have for the energy-energy CF
Fip(k—o,1) =V5y™(1— yi2't?+ 655t exp —at?),

Fg%t)(oo,t) a0.2., sa0d )
WZagg(l—’y%Ht + o3t )exq_aARHt )

+(1— agy)(1— y2U2+ 065%%)

X exp( —aAgot?), (2.26)
where
yo-S el
, M !
2 vigm
ICU .
S VRVELR .
and
y(at): <EH>(kBT) 2 a
3BH™ /o0y (SAD NRHE
2
sgg:(kBsT) Ry &7
,at. ’
VST
[(ER) —(En)?]
azz= (2.28

—V(S%at.) ()

for the TIP4P water model, especially at the lower tempera-
ture. In this range, we already found that the dynamics of the
TIP4P water model is faster than that of real water. The
SPC/E model performs well also from the point of view of
static dielectric constant and its temperature dependence,
which we evaluated,=78+x9 at 255 K ands(=74*8 at

300 K with runs of 800 and 700 ps, respectively. The re-
ported uncertainty is derived from the spread of the diagonal
components of the Kirkwood tensor around the average.

As in [1] the time correlation function$;(k,t) have
been computed at 255 and 300 K in the atomic and molecu-
lar formalism for a number ok values, ranging fronk,,
=0.288 A" to a rather high value 045 A~1. We directly
computed allF;;(k, t) at finite k exceptFsg(k,t) that was
obtained exploiting conservation laws, E§.2). This proce-
dure allowed us to check internal consistency of the calcula-
tion by a test of relations such as, e.§qu(k,t) =F,5(k,t)
= — (LK?)[ 9?F 14(k,t)/dt?]. Fak,t) and Fgs(k,t), how-
ever, have been computed directly, kat 0, where they can
be used to obtain viscosity and thermal conductivity via
Green-Kubo relationgsee Eq.(2.1)]. Fs(0,t) is the time
correlation function of the heat flux vector, which has been
calculated according to the definition given by Marechal and
Ryckaert[20].

A. Thermal conductivity

Fs5(0,t) has been calculated for all three components of
the heat flux vector and its average is shown in Fig. 1 for
both temperatures and formalisms. This allowed us to esti-
mate the error and monitor convergence, which, on the inte-
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TABLE |. Calculated equilibrium(@ and dynamic(b) properties of SPC/E and TIP4P water models.
Experimental data in parentheses.

@

T -U P p a Cy

(K) (kd/mo)) (kban (glcn?) (1004 K™Y (3/mol K) €

255 44.244.4%  —-0.04  1.000.995° 2(—5.8)° 90.576)° 78(95.6¢

300 41.241.5% —0.12 0.98%0.996°  5.52.9° 82(74)° 74(78.3
(b)

T D 7s D 7 s A

(K) (10%cm/?)  (po (P9 (1072 glcms) (10 2glcms)  (W/mK)

245 TIP4P 0.60.25° 14.5 39 2.18.0° 7.6(25¢ 0.350.45

255 SPC/E 0.7®.5° 13.2 36.3338)d 1.853.9° 6.89.9)¢ 0.520.49

298 TIP4P 3.7 7 0.47 1(3.09

300 SPC/E 2.@.4° 4.4 6.718.0' 0.50.9° 213.09  0.670.61"

aReferencd12). ‘Referencd 14].

PReference 13]. ‘Referencd 17].

‘Referencd15]. 9Referencd 18].

dReferencd 16]. "Referencd 19].

grated functions of Fig. 2 required averaging over 625 ps atliffusion. However, previous MD resulf&1] of A calculated
255 K and 460 ps at 300 K to maintain the error within for the Carravetta-Clemenf22] model of water are much
~10%. The thermal conductivity values we obtafr larger(~60%) than the experimental data at 298 K, although
=0.67£0.04 W/mK at 300 K anch=0.52+0.03 W/mK at  the temperature dependence)os qualitatively correct.

255 K) are in good agreement with the experimental data The short-time part oF¢(0;t) (Fig. 1) is dominated by
(A=0.61 W/mK[19] at 300 K and\=0.49 W/mK at 255  the librational dynamics, whose oscillations, with amplitude
K). The latter value has been obtained extrapolating datgyice as large in the molecular formalism as that of the
measured on the saturation curve between 543 and 273 K. Wyomic functions, have essentially vanished beyer3 ps.
the case of the TIP4P water model, the valua afe calcu-  Thg |onger-time part, however, is very important from the
lated as described ifil] at 245 K (0.35 W/mK) was less oy of view of the integral oF s(01t) and hence of thermal
good but still fair compared to the experimental dataconductivity, as can be seen in Fig. 2. In particular, the long-

(0.45 W/mK), which suggests thatmay be less model de- time tail, apparent in Fig.(@), decreases by 40% the value

pendent than other transport parameters, e.g., viscosity eIy corresponding to the first 0.3 ps.

This long-time tail is not visible at 300 K. This different
role of the long-time tail at the two temperatures can be
F_(0.0) exploited to rationalize, at least qualitwatively, the “anoma-
: L lous” behavior of\ in water. In most liquids, alcohols for
' {105 Al J instance, thermal conductivity increases when temperature
decreases, while the opposite is observed for water, more
remarkably in the supercooled region. The results of Fig. 2
suggest that this is due to the long-time tailFef;(0t). In
fact, if the long-time tail is subtracted frofigg(0t), N is
larger at 255 than at 300 K, Fig(l2. The long-time tail of
Fs5(0t) seems to be a peculiar feature of water, presumably
related to its positional and orientational correlations and
A their temperature dependence.

ps mol

B. Dynamical modes of water and their contribution to A

An analysis of the contribution ta of the various dy-
namical modes of water, corresponding to different charac-
teristic time scales, can be carried out through the spectra of

0.3 Fs5(0t), shown in Figs. 3 and 4. As ifl], they have been
t{ps] obtained by a numerical transform of the difference between
the computedr55(0,t) and a proper fitting function, which is

FIG. 1. Heat flux fluctuation correlation functioRigs(t) at 255  then added to the analytical transform of the fitting function.

K (full curves and 300 K(dotted curves The two more strongly The most apparent feature of the spectra at both temperatures
oscillating curves are calculated in the molecula) formalism. is the large high-frequency band that corresponds to libra-

0 0.1 0.2
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A(t) M)
[W/mK] WK
0.8
5
0.6 4
H 3
0.4 | i B E T _
20F . 2
0.2 1ol - 1
-l o
0 r o.0p 1 A 0 100 200 300 400
1 ¢ I 1 1 1
. 0 02 04 06 o [THz]
0 0.5 1 1.5 ¢[ps]
Mo)
[W/mK]
A(t)
[W/mK] [
0.80
0.60 0.5
' v, (b)
L A
0.40 - -
2.0 ; o
= i i - ‘.:"/x.,
0.20 1 1.0 R °1 |/ ] ] ] !
- L 4 0 20 40 60
89 [THz)
0.0 0.0 .
i o, , o 02 04 06 FIG. 3. (8) MD spectra of () (dot-dashefiand (at) (dotted
0 0.4 0.8 12 Fss(t), in units of thermal conductivity, Eg2.1). The regionw
[ps] >80 has been fitted with two types of functions, functiob$ [Eq.

(3.2] and D) [Eg. (3.3]] (full curves. The former are the two
FIG. 2. Running integral oF ¢(t), i.e.,\(t) [Eq. (2.1)], at 255  UPPer full curves of the_ inset showing the Iow.-frequency region,
K (@) and 300 K(b). Dotted and full curves shownf) and @t) while the latter two vanish ab=0. (b) Comparison of MD and

results, respectively. The insets show the short-time behavior of thtting results with @) functions extended to the low-frequency

integral at both temperatures. The heavy dashed curg@ iis the ~ Part of the spectrunupper curves The contribution of the cage
fit to the long-time tail of the integral. The function labeled 255 K Mode and of the two exponentials to the fitting is also shown for
in (b) is the integral of@ minus the long-time tail. both (m), dot-dashed, and atomia{), dotted, resultsT =255 K.

atomic functions, should be compensated by an equal and
tional motions. This band is barely visible in the spectra ofopposite difference of the low-frequency part of the two de-
F440) [2], indicating that the contribution of libration to scriptions.
viscosity is negligible. Moreover, the librational band is  This hypothesis has been tested fitting the high-frequency
much larger in the molecular spectrum than in the atomigart of the spectra with a combination of functions, labeled
one. On the other hand, i.e., the zero-frequency value of |, such ag23,24
the spectrum, must be independent of the formalism adopted,
and actually the whole low-frequency 10 THz) part of
the spectra is very similar for the molecular and atomic func-
tions. This means that a librational contribution to thermal )
conductivity, presumably different for the molecular or Functions like this, withf, (0)=0 and a transform

fL(t)=exg — y.t) cos{th)Jr%sin(th) .3
L
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e I C—- 32 A(@)
= , . ®
STz P+ of] o
give 2y, /(¥ + w?) as a contribution ta.[z=0].
A fit of this kind with five functions, three for the libra-
tional band and two for the highest-frequency band betweer 4 +
200 and 350 THz, has been carried out starting from 80 THz
and the results are also shown in Figa)3
As can be seen, the fit performs well for both molecular
and atomic spectra in the range 80-500 THz, but the ex-
trapolation tow<80 THz, Fig. 3a), leads to differentw )
=0 values, which can hardly be compensated by an equa
and opposite difference of the low-frequency parts, with
physically meaningful functions. 1+ A
An alternative point of view is that of assuming that Ii-
brational dynamics does not contribute to thermal conductiv-

ity. The simplest function which satisfies the constraint of 0 r
vanishing zero-time derivative and vanishing time integral, 0 100 200 300 400 TH
required to satisfy conservation laws, has a transform giver ® [THz]
by
= Z+az a3 Mo)
o(2)= 23+a122+blz+b0' 3.3 [W/mK]
with a;, by, andb, real and positive. In the time domain 1 F
this becomes
A 2y,5C
Fo)= =2 exp — yapt)| cogwpt) + 2272 sinf wpt) -
B2 wpA12
2 0.5 \
YipY D
- =22 expl— o), (3.4 %, (b)
Ci2
\:..- """" .
where S N
P
A12: ( fyiD—}— 7§D+ w%), o b _,;’-'-':'/" -~ ~;.:>::_‘:\':—..
1 1 1 1 1
BlZZ(YlD_yZD)2+w2D1 (35) 0 20 40 60
® [THz]
C1o=(¥3p— ¥ip T ®p),
so that FIG. 4. Same as Fig. 3 at 300 K.
a;=Y1p+2v2p, contribution is only significant at 255 K. If the remaining
cage mode is also described by a function such ag¥E8§),
bi=2y10¥20+ Y30+ @, (3.6) it turns out that the two exponentials yield the same contri-
bution to thermal conductivity, irrespective of the formalism
bo= le(7§D+w%), adopted, both at 255 and 300 K.

This is not obtained if the cage mode is described with an

A fit with a combination of five functions of typ€3.3), re- L function, hence we consider that the assumption of no
ferred to asD, is also shown in Fig. 3. Ag;p has been contribution to thermal conductivity from high-frequency
constrained to be equal t@, the number of parameters for dynamics leads to a more satisfactory physical picture.
the D fit is 2 as for thelL fit. As can be seen, the quality of
the D fit for ®>80 Thz is the same as that of thefit, but
the low-frequency part which we obtain subtracting e
function from the MD spectra is physically more meaningful. ~ As already mentioned;ss(k,t) at finitek can be derived

The low-frequency part, in fact, can be well described byfrom Fz3(k,t) via conservation laws, Eq2.2). This, how-
a combination of two exponentials and a “cage mode.” Theever, implies that the spectrum Bs(k,t) vanishes atw=0,
faster exponential, which gives the “normal” contribution to exactly as in the case éf44(k,t) [2], the stress-tensor com-
\, has a time rate of the same order as the inverse of thponent correlation function, in view of its link with the lon-
collision time (~0.03 ps for SPC/E, calculated as [ifh]), gitudinal current CFF,5(k,t). As a consequence, the spec-
while the slower exponentialthe “anomalous” negative trum of Fs5(k,t) with its discontinuity betweek=0 and all

C. Generalized thermal conductivity and diffusivity
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FIG. 5. \(k,0) atk=K,, andT=255 K[Egs.(2.4), (2.5, and FIG. 6. Atomic (full curves and molecular(dotted curves
(2.9]. The same functions as in Fig(l are shown and the inset Ggy(k,t) [Eq. (2.3)] at a few values ok. The curves are labeled
details the low-frequency region. according to the value ofk(Kpin)>.

finite k is of no help in computing generalized thermal con-Gas(k;t), Fig. 6, which in the hydrzodynamic limit becomes
ductivity. Rather, the latter can be obtained frm(k,»),  €XponentialGsy(k,t) =exg —D+(Kkt]. As can be seen, this
Eq. (2.9 through Gag(k,t) and its spectrum, Eqg2.3— limit is almost reached for the two smallekts where

(2.5), shown in Fig. 5. The values af(k) we obtain this way “atomic” and “molecular” functions almost coincide. The
at k=k,, are somewhat larger than &=0, namely, two functions, on the other hand, differ remarkably két

A(Ki)=0.57 W/mK vs 0.52 W/mK at 255 K andl(k.,) = 20, where they decay faster, with an oscillation of the fre-

=0.69 W/mK vs 0.67 W/mK at 300 K. guency of the cage mode, much more visible in the atomic
In the spectrum, Fig. 5, we observe an enhanced libratesults. _ _ _

tional band, which is now sharply peaked ab The values oD+(k), obtained extrapolating the integral

=170-175 THz, i.e., at the frequency of the CF of the anOf Gaa(k,t) to t—o, are shown in Fig. 7. In addition to
gular velocity component around an axis normal to the di-atomic and molecular values, the curthgd) presents results
pole axis, in the molecular plari8]. At low frequencies, on obtalned.from the following decomposition of the integral of
the other hand, the contribution of the cage mode and, evef#ss(k.t) into a fast and a slow part, assumed to decay expo-
more so, that of the two exponentials is essentially the sam@entially:
as atk=0. This supports the idea that transport parameters .
such as viscosity and thermal conductivity do not change J ng(k,t)dt=IHF(k,r)+I(hyd)(k)(1—e’D(Thyd)<">k27)_
significantly betweerk=0 andk=Kk,,, unlike what is ob- 0
served for, e.g., velocity and absorption of solif{ (3.7
From the back transform of the spectrum shown in Fig. 5,
Ny(k,t) can be obtained and thug(k,t) and the character- Overall, D+(k) decreases as a function lof irrespective of
istic frequencyfrq(k), Eq. (2.5. Its values at 255 K are the method used to calculate it and at both temperatures.
frq(kmi=28 and 21 THz for the molecular and atomic ~ On the other hand, whilB{™?(k) is the same for atomic
function, respectively. The time integral nf(k,t) is similar ~ and molecular data, the molecular results decay faster than
to that of Fgg(k,t) [Fig. 2@] with an analogous negative the atomic ones at both temperatures, after being equal at
long-time tail. The time dependence pof(k,t) is qualita- =Kk,,. It should also be noted th&(k) is smaller atk
tively very similar to that obtained for the TIP4P model at =0 than atk=K,,. This apparently anomalous feature and
245 K (see Figs. 17 and 18 of Réfl]), besides the libra- the faster decay of the molecular values can be accounted for
tional oscillations, that were subtracted[i] from Fg5(k,t) if the contribution toGz4(k,t) of the various dynamic modes
[and henceG4(k,t)] at the outset for the TIP4P model. is taken into account as follows.
Again, the main difference between the SPC/E and TIPAP Gg4(k,t) is fitted with a combination of four complex
results forny(k,t) is in the decay rate of the long-time tails exponentials. Two of them represent the librational and cage
[see Egs(3.8) and (3.9)], which is slower for the SPC/E mode contributions, with amplitud;,(k) andAg,gdk), re-
water model,y{N)~2-3 THz at 255 K vg){\'~4-9 THz at  spectively. The remaining two exponentifigith amplitude
245 K for TIP4P, see Table X ifd]. Anyd(K) and Ag(K) ] describe the low frequency related to
Generalized thermal diffusivityp+(k) can also be ob- the hydrodynamic contributions td,(k,t). As already men-
tained more straightforwardly from the time dependence ofioned(see Figs. 2-5 the low-frequency part oi,(k,t) is
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FIG. 7. Generalized thermal diffusivity as a functionlofEq. FIG. 8. Contribution of the dynamic modes @y(k,t). Mo-

(2.4)]. Atomic (squaresand molecularcircles results are shown. lecular(open symbolsand atomid(filled symbolg results obtained
The curves labeledhyd) display D1(k) obtained from Eq(3.7.  fitting Gag(k,t) with four complex exponentials, see text.
The latter are the same for atomic and molecufay ¢lata, within =255K.
the error.

“anomalous” modes ofNy(k;t).
composed of a “normal” mode, with positive amplitude and  Alternatively, an approximate description of the modes of
an “anomalous” mode with negative amplitude. The ampli- Gaz(k,t) can be obtained from the spectrum Nf(k,t),
tudes of these four modes are shown in Fig. 8 as a functiothrough Eg.(2.5. We restrict this description to the low-
of k. As can be seen, the main contribution to the integrafrequency region, both for its importance fafk) and for
comes from the “hydrodynamic” and from the “collective” numerical convenience.
modes, which both are functions of the “normal” and From this equation we obtain

Sk 2) 1 2+[290+ %12+l {0l + A — Y1) + 290 1
!Z ~ 1
3 g (Lta) @ 2+[279+ 412427810+ 0@+ y O |71 B[ (71 7]
oz zEyY
(3.8
|
where the superscriptdNj and G) relate toNg(k,t) and o [),(CN>+7,(l _7<1G)]
Gag(k,t), the subscripte and | stand for collisional and Yo T >
long-time mode, and thk dependence of the coefficients is
omitted. £(BF)?
. . . o > 1 )
The rlghtmogt term of Eq.3.9) is the Ilneqr combination w(cG) =5 [(1+a1)7’( _alygm] 7, (G)°
of an exponential and a complex exponential of the tpe
Eq. (3.2), with the constraint of vanishing time derivative at
t=0. (G) 70 (N) 27 G 39
Equating terms of the same order im we obtain the @1 G) +(y (G>)2 (3.9

following system of equations:
Solving Eq.(3.9), the low-frequency parameters Gh4(k,t)
) , can be obtained from that df,(k,t), y(N)~2 3 THz and
[y N+ YN IR N VY yN~20-30 THz at 255 K, fok<0.8 A"1. The results
(BF N are in good ggreement with that directly obtained frorr_l the fit
[(1+a) ¥V = a1 yV]1=0, of Gay(k,t), in thatGyy(k,t) turns out to be composed, in the
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TABLE Il. (a) Calculated molecularnf) and atomic &t) initial values ofF 14(k,t), Fq3(k,t), andFgg(k,t). (b) Calculated molecular
(m) and atomic &t) initial values ofF,,(k,t), Fos(k,t), Fas(k,t), andFgs(k,t).

(@
k Vigat) Vig(m) Vay(at) Vaa(m)
(A™Y Vy,(at.) Vy,(m) (kJ/mol (kJ/mol) (kJ/moly (kJ/moly
T=300K
0.00
0.2876 0.065 0.065 —2.754 —-2.821 179.5 185.4
0.4068 0.068 0.069 —2.984 —3.036 192.6 198.8
0.7046 0.086 0.086 —3.596 —3.641 221.4 222.5
0.9965 0.119 0.122 —4.899 —4.946 286.2 271.8
1.2864 0.232 0.239 —9.346 —9.288 493.2 438.5
1.4383 0.309 0.322 —12.69 —-12.71 650.3 577.2
2.0743 0.946 1.040 —35.78 —37.99 1594 1464
2.8766 1.120 1.435 —-39.37 —55.05 1746 2186
4.3149 0.692 0.879 —25.62 —-33.21 1429 1332
5.7532 0.774 1.008 —27.87 —38.04 1453 1510
8.6298 0.773 0.965 —28.77 —36.37 1443 1448
14.383 0.808 1.003 —29.68 —38.08 1467 1522
28.766 0.791 0.998 —29.37 —37.72 1502 1502
40.272 0.800 1.000 —29.76 —37.78 1510 1503
T=255K
0.00
0.2895 0.050 0.050 —2.095 —-2.157 136.2 142.7
0.4095 0.045 0.046 —-1.911 —1.954 131.1 136.1
0.7092 0.064 0.064 —2.702 —2.746 173.8 175.4
1.0030 0.104 0.106 —4.567 —4.656 271.3 265.3
1.2949 0.209 0.215 —8.946 —-9.168 472.0 453.3
1.4477 0.308 0.317 —13.42 —13.86 688.0 666.2
2.0880 0.946 1.030 —38.96 —42.25 1795 1789
2.8955 1.150 1.470 —42.70 —-62.70 1896 2725
4.3432 0.660 0.841 —26.09 —35.06 1417 1523
5.7910 0.659 0.843 —25.40 —-35.21 1340 1531
8.6865 0.753 0.924 —29.51 —38.52 1475 1663
14.477 0.834 1.030 —-32.71 —43.20 1595 1874
28.955 0.788 0.995 —30.59 —41.63 1528 1800
40.537 0.791 0.996 —-31.12 —-41.79 1553 1812
(b)
k Vo at)  Vy(m) Vss(at) Vsg(m) Vy4(at) V44(m) Vog(at) Vo5(m)
(A™Y [(Alps)?] [(Alps)?] [10° (A kd/mol psf] [10° (A kd/mol ps¥] [10* (A/ps)*] [10° (A/ps)“] (A2 k.]/p§ mol) (A2 kJ/pg mol)
T=300K
0.00 2.338 4,747
0.2876 13.63 13.60 2.900 4.936 3.504 3.530 —526.8 —496.1
0.4068 13.35 13.35 2.802 4.337 —536.3 —-509.4
0.7046 14.01 14.19 2.808 3.122 3.158 3.026 —-671.0 —438.8
0.9965 13.85 14.21 2.869 2.212 2.477 2.546 —782.8 —426.1
1.2864 13.19 13.74 2.934 1.598 1.806 1.823 —857.0 —440.2
1.4383 13.46 14.15 2.889 1.338 1.469 1.515 —894.3 —472.6
2.0743 12.69 13.95 2.692 0.714 0.629 0.572 —808.2 —508.6
2.8766 12.29 14.05 2.393 0.422 0.353 0.218 —523.0 —493.3
43149 11.34 13.34 1.456 0.298 0.257 0.165 —376.1 —475.5
5.7532 12.23 13.97 0.950 0.251 0.186 0.111 —358.9 —494.8
8.6298 13.01 14.52 0.655 0.226 0.135 0.088 —444.9 —-522.9
14.383 12.22 13.54 0.480 0.192 0.101 0.065 —402.7 —479.6
28.766 12.44 13.87 0.33 0.186 0.085 0.059 —441.6 —491.9

40.272 12.41 13.96 0.26 0.183 0.085 0.058 —447.2 —494.8
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TABLE II. (Continued)

T=255K

0.00 1.827 3.848

0.2895 12.20 12.22 2.310 4.332 3.230 3.256 —529.3 —497.4
0.4095 11.73 11.78 2.242 3.749 3.131 3.160 —523.6 —449.7
0.7092 11.65 11.81 2.268 2.597 2,712 2.741 —626.0 —412.4
1.0030 11.29 11.59 2.352 1.819 2.149 2.213 —713.3 —387.9
1.2949 11.23 11.71 2.385 1.311 1.608 1.632 —800.7 —425.3
1.4477 11.19 11.78 2.360 1111 1.339 1.356 —821.3 —447.1
2.0880 10.74 11.77 2.274 0.621 0.525 0.481 —756.4 —481.2
2.8955 10.34 11.89 2.009 0.392 0.290 0.193 —494.6 —472.6
4.3432 9.98 11.94 1.177 0.293 0.220 0.147 —380.0 —474.7
5.7910 10.31 11.73 0.766 0.244 0.154 0.094 —335.1 —463.9
8.6865 11.13 12.10 0.518 0.222 0.105 0.066 —419.0 —481.5
14.477 10.73 11.70 0.390 0.201 0.074 0.049 —392.7 —463.7
28.955 10.54 12.04 0.24 0.20 0.061 0.043 —404.9 —480.4
40.537 10.56 11.89 0.19 0.19 0.061 0.042 —418.0 —477.8
long-time regime, of two modes with positive amplitude, as {530 k) =VEY (k) — VS (k), (3.12

opposed to that oN(k,t). The first is a slow exponential

with a rate y{®)~0.7 to 0.8 THz at 255 K and a damped

L-type mode withy{®> {® (y(®)~10-15 THz at 255 K I'S™ k) =ViP (k) —1=8"(k) - 1. (3.13
for k<0.8 A°1,

At the lowestk, the atomic and molecular results are theThe latter function is the cross part of the amplitude of the

e ! ; ;
o . intermediate scattering function correspondent to the center
contribution toD+(k) than the hydrodynamic mode. The am- of mass of the water moleculeByy(k.t).

plitude of the collision mode, as that of the other nonhydro- The k dependences dfi(jc)(k) for the three independent

dynamic modes, goes to zero whielgoes to zero, compen- ) L
sating the increase of the amplitude of the hydrodynamic,c':S Fiu(k,t), Figkit), andFak,t) are shqwn n F'g,' 9.
s can be seen, the molecular results coincide akal]

mode, Fig. 8. This effect is more apparent at 255 K, where ™. . . .
the difference of contribution t®+(K) of the two modes is while the atomic values are somewhat dispersed, mainly
around the maximum of the curve.

larger.

Also, the growing difference between atomic and molecu-
lar D+(k) (Fig. 7) is due to the larger amplitude of the hy-
drodynamic mode of the molecul&@;4(k,t) with a conse- -
quent smaller contribution t®1(k) and A(k). Notice the Fij(k)
correlation between the amplitude of the hydrodynamic
mode of Fig. 8 and the difference between atomic and mo-
lecular thermal diffusivity of Fig. 7.

0.0 |

D. Generalized thermodynamic properties

Tables 1(a) and Ii(b) collect the initial valuesv;;(k) of
the computed CF'&;(k,t) at both temperatures. To analyze
these data it is convenient to define a functibp(k) as

-1.0 |
follows:

0.0

V@) —y(san
(@9 (k) — V{S29(k) 510

(Cab ) —
F|J (k) Vl(Jsm)(k—>x) ) -

V™ (k) — V™ (k
i (K) = Vi ™ (k) 319 | |

(Sm) . | -1.0
Vi (k— ) 0 5 10 15 LAY

T o=

These functions extract the gollgctive, or cro@_,( part of FIG. 9. Normalized collective part o#,,(k) (circles, V4(K)
the relevant CF and normalize it to the—co limit of the  (squares and Vay(k) (triangles, Egs. (3.10, (3.11). Molecular

single-molecule, or selfg), contribution of the molecular (open symbolsand atomic(filled symbolg results. The full heavy
function. For instance, we obtain for the density-density CFcurves show the O-O partial structure functions.
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FIG. 10. Generalized thermodynamic functions. Molecular and atomic results at 3le& symbolg and 255 K(open symbols

This shows that the behavior of the three molecular CF’'s Hence we can attribute the smaller peak of the atomic

is determined by théFourier transform ofthe radial distri-
bution function of the center of masg(r), i.e.,

sin(kr
kr

)

F;jc,m)(k):m-rpf:rz[g(r)— 1] dr. (3.19

The analogous relation for the atomic part can be obtaine
generalizing Eq(3.14) to water[25]:

2 2

4m 4mgm m,
P{C20(k)= 17 Sun(K)+ =7 Sow(K)+ 172 SoolK),
(3.15
where
» in(kr
Sij(k)=477pJ'0 r2[gi(r)—1] Smlir )dr. (3.16

functions to the contribution of the O-H pair, which is mini-
mum atk=2.9 A~1, where the O-O correlation has its maxi-
mum.

From the data given in Table Il the generalized thermo-
dynamic properties heat capacitp(k) andcy(k), thermal
expansivitya(k), and enthalpy per moleculé(k), can be
galculated by means of Eq&2.11)—(2.14). The results are
shown in Fig. 10.

As for cy(k), the most apparent feature visible in Fig.
10(a) is the large increase of the atomic data, roughly five to
six times larger than the corresponding molecular values at
the largesk’s. The moderate {20%) increase of the latter
is to be attributed to the cross term while the self part, es-
sentially k independent, is c{>™(k—%)~100 and
~110 J/mol K at 300 and 255 K, respectively. The values
obtained ak=0 from Eq.(2.9) arec,/(k=0)~82 J/mol K at
300 K andcy(k=0)~90.5 J/mol K at 255 K, in good agree-
ment with the results &=k .
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Cv(a!)(k)‘ Cv(m)(k) ’ Yzz(k)
[A%ps?]
[ J/mole K]
13.0 }
500
12.0 |
400
11.0 |
300 | R
10.0 |-
200 |
9.00 L L . L
100 - 0 10 20 30 40k[A‘1]
0.00 L FIG. 12. Comparison of MD(symbolg and theoreticalfull
) L L L L { curves, Eq.(2.19] results of the initial value of the longitudinal

0 10 20 30 40 k [A—l] current.

A striking difference between molecular and atomic re-
FIG. 11. Difference between atomic and molecular results of sults is exhibited by thek dependence of h(k)
constant volume specific heat. M@pen symbolsand computed =V,o(K)/V,(K), the generalized enthalpy per molecule
[Eq. (3.17] results. Fig. 10b). The first has a maximum at1 A~!, about 25—

0 — ; -
On the contrary, the difference between atomic and mo—30 % larger than g =0, while the latter shows a deep mini

~ -1 i
lecular cy(K) is due to the self part of thi;;(k) used to mum at~1.6 A~1, where the amplitude almost doubles. In

calculate specific heat through E@.12. Actually, exploit- this case, the single-molecule molecular term does not de-

) . o . pend onk, and thek dependence of the corresponding
ing the analogy of behavior apparent in Fig. 9 we obtain atomic data cannot account for the behavior observed in Fig.

ksT2[c! a”(k) —cﬁ,m)(k)] 10(b). This is mainly determined by the numeratdpg(k).
In fact, V{3 does not depend ok, while thek dependence
zvgaﬂ(k)—vgz'm>+[v<1§'m>(oo)]2 of V(a‘ )(k), shown in Fig. 12, is clearly very different f_rom
that ofh(k). Hence we conclude that the behaviohgk) is
X[1-V{33(k)—268,5K)], (3.17  due to collective effects.
The contribution of the various modes can be estimated
where from the spectra oF ,5(k,t), shown in Fig. 183) at a fewk
vigat values. These spectra have been normalizedtd” (=) to
(k) allow a more homogeneous comparison. A hydrodynamic
13 V(5m>( ) mode, whose peak shifts in frequency with a bending
mode(8—10 TH2, and a cage mode can be detected in these
To obtain Eq.(3.17), we also assumed the cross terms equaspectra. The latter mode has the largest difference of ampli-
for atomic and molecular functiongsee Fig. 9 and tude between atomic and molecular results.
813(K)<<1. In fact, from Egs.(2.19 and (2.16 we have The comparison of Fig. 1B) between the spectra of
813(k—)~0.01 at 300 K ands;5(k—=)~0.05 at 255 K.  Fps(k,t) and F,,(k,t), normalized as above, further shows
Notice that the right-hand side of E3.17) is only com- that, atk=1 A", where the maximum oh(™(k) is, the
posed of self(rotationa) terms containing spherical Bessel amplitude of the cage mode Bhg(k,t) is larger than that of
functions, Eqs(2.15-(2.21). F,.(k,t) for the atomic function, but smaller for the molecu-
The difference between atomic and molecutgfk) is lar one.
shown in Fig. 11 as a function d&f and compared to that Strong evidence supporting the above hypothesis of a
obtained from Eq(3.17). The good agreement between the dominant role played by collective interactions in determin-
two curves proves that this large difference is almost totallying the behavior ofi(k) is provided by the results shown in
due to single-molecule effects. From an analysis of the conFig. 14a). In the atomic case, the functiof,s(k) has been
tribution of the various modes, as was done for the curves oflecomposed into a kinetic and a potential part, according to
Fig. 8, we find that most of the observed difference is due tdEq. (2.22 [F,5(k,t)=Fga4(k,t)]. At low k, the potential
the cage mode, i.e., the dynamics whose frequency compaderm is much larger than the kinetic, while the opposite is
nents are centered at45 THz, whose amplitude is twice as true at intermediate to large where the potential term de-
large for the atomic function as that of the molecular one. cays to zero. The combination of the two terms leads to a

Vi3 (k). (3.18
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- FIG. 14. (a) k dependence of the kinetikin) and potentialpot)
contributions toV,g(k) calculated in the atomic formalism at 255
0.0 F K. The scale on the right relates to the partial structure functions for

the O-H and H-H pairs(b) k dependence of the translational part of
0 20 40 60 TH a(k) and y(k)—1 (seg text at 300 I_<(fi||ed symbolg and 255 K

o [THz] (open symbols The lines are an aid to the eye. For the sake of
comparison, also the O-O structure functions at the corresponding
temperatures are shown.

FIG. 13. (a) Spectra of atomi¢full curve) and moleculafdotted

curve F,5(k,t), normalized to the higlk-limit of molecularVs. h lue is th f . d | lar |
The number on the curves indicatels/l(mm)2 and the arrows a WhoSe value is the same for atomic and molecular formal-

typical peak position of the O-0-O bending mode and cage moddSM, we can conclude that, at intermediats, intermolecu-

T=255 K. (b) Comparison of the spectra Bhe(k,t) andF,,(k,t), lar rotational effects produce a larger or smaller amplitude of

normalized as above, &t=1 A~L, thek value of the maximum of the cage mode, that leads to a minimumhét(k), or a

the moleculath(k), see Fig. 1(b). maximum ofh(M(k), located on opposite sides with respect
to the translational valub™ of Eqg. (3.19.

shift of the peak maximum to lowed's (~1.6 A~1) com- On the other hand, either in tHe—0 limit, where the

pared to that of the separate components, which both peak Aydrodynamic mode dominates, or in tke- limit (free-
~2 A1 There is an apparent correlation between the posiparticle behavior both definitions lead to the same value
tion of the maximum oV®(k) and V&M (k) and that of  h.

the first maxima of the partial structure functiofEq. In view of Egs.(2.10 and(2.12 also the constant pres-
(3.16]. Presumably, a similar shift also occurs in the mo-sure heat capacity,(k) and hence the ratig(k), as well as
lecular case, likely to a larger extent. the thermal expansion coefficiea(k) will have ak depen-

If we introduce a “translational” generalized enthalpy  dence that is determined by thattafk) andc, (k). Actually,
we can write fora(k)

V(S,m) 0 V(S,at) 0
u_ Ve () Vs (%) (3.19 KaT2a ™20 (k) =g T2 (k) + kg T2 (),
V2 () Vy™(e) (3.20
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FIG. 15. Very-highk behavior of someF;;(k,t). Comparison of MD result§symbolg with those obtained from Eq2.22 and
conservation laws dt=10,;,. Molecular results: open symbols; atomic results: filled symbols.

where

V(m)(oo)
kaT?2 (m) k) = 1+V(C) Kk h’[rl_ 13
sl ay (K)=[ 12 (K| hs V(lT)(w) ,

(3.21)
ksT2a!m (k) =[1+ VP (K ][h™(k)—h¥], (3.22
and
a@(k)=a"(k),

VI (o)

VT (o0) +[1+ Vi (k)]

ks T2aygt (k)= (Vi3 = 1)( hif'—

X[h(M(k)—ht. (3.23

The convenience of Eq3.23 is that it extracts the depen-
dence ofa(k) on rotational motions.

Equation(2.12 that givesy(k) —1, the ratio of specific
heats, depends at the numerator[ak)]? and, at the de-
nominator, onc,(k), so that the sharp peak of the atomic
results, Fig. 1), is to be related to that of(k). On the
other hand, the two peaks of the molecular results are due to
the combined effect of(k) andc,(k), as can be seen from
Figs. 1Qa) and 10dc).

The difference observed in thedependence of the mo-
lecular and atomic values a,(k), h(k), «(k), and y(k)
has been traced back to rotational terms typically in the fre-
quency range around 45 THz. This point of view is sup-
ported by the results obtained for the translational part of the
above functions, computed from E¢.19, settingh=h""
and assuming the molecular data for the translatiopgt),
see Fig. 1) for a(k) andy(k). As can be seen, the shape
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of both these functions closely resembles thaB@) at the data and do not depend on the formalism adopted, within the
relevant temperatures. statistical uncertainty.

a(0), obtained extrapolating tk=0 the data of Table II, The most prominent feature of the energy flux CF is a
is in agreement with that given by E(.21), Fig. 14b), and  large oscillation with characteristic frequencies typical of li-
positive at both temperatures, namehy2+1]x10 %K at  prational dynamics. The large valueXiw) in this frequency
255 K and+[5.5+1.5]x 10" */K at 300 K, to be compared region may be essential in the very early stage of fundamen-
with the corresponding experimental value$.8< 10" */K  tal solvation processes. For instance, the asymmetric stretch
[13] and +2.8< 10" */K [14]. The disagreement at 255 K is of the OH bond and a libration have been shd@i] to be
an evidence that the density maximum of the SPC/E watestrongly involved in the absorption of the energy released by
model is shifted to lower temperatures than that of real waan excited electron that decays to its ground state.
ter, as also observed for the TIP4P mof&8]. The large high-frequency oscillation of the energy flux CF

Note that at allk's consideredy(™(k)<1.2. This con- is a distinctive feature of water, compared, e.g., with that
firms the lack of significant coupling between fluctuations ofobserved fon-butang[20] or, even more, the Lennard-Jones
density and energy in water. A further proof of this is pro- fluid. The former only shows a small oscillation centered at
vided by the small values @5,5(k,t) at allk’s, that indicate  ~30 THz, while the LJ fluid has a monotonically decreasing
negligible coupling between stress tensor and heat flux flucenergy flux CH28].
tuations[1,5]. The possibility of computing. according to a molecular
and an atomic definition has been exploited to show which
dynamical modes of water most contribute to this transport
parameter, ak=0. It turned out that two low-frequency

At large k, sayk>10 A~*, the time dependence of the exponential-ike modes determine the value\oThe first is
computed CF's changes from a linear combination of comfaster, with a decay rate of the order of collision tifre0.03
pIeX eXpOﬂeﬂtialS into a Gaussian one. In this ||m|t, the SpeCps) and gives a positive contribution ta The slower expo-
tral bands relevant to the various modes broaden and merggntial, conversely, decreasasto an extent that depends
with each other, so that the spectrum becomes similar to tharongly on temperature~40% at 255 K and almost negli-
of a free motion. gibly at 300 K. The temperature dependence of this mode

The difference between an atomic and a molecular liquidgccounts for the anomalous behavior of thermal conductivity
of course, is that the rotational motion of the molecular lig-of water, that decreases as a function of temperature, in the
uid requires a second Gaussian to describe the CF. ACtuaHYQmperature range exp|0red. Contributions\ttsom higher-
the coefficientsAgy and Ao in the argument of the two  frequency dynamics, i.e., cage mode and librations, have
Gaussiangatomic definition, Egs(2.23—(2.26] both con-  peen ruled out contrasting their rather different behavior in
tain a translational term for the center of mass and moleculaghe molecular and atomic results. This procedure of analysis
rotational terms. The molecular definitions, conversely, are)f the modes contributing ta becomes more difficult to
quite analogous to that for a hard-sphere flli@], except  implement as temperature increases because of the broaden-
that the interaction potential mak®s4(k) #0 here. ing and merging of the corresponding bands.

The agreement between Ed&.23—(2.26) and the MD We recall that the SPC/E model employed is a rigid one
results is very good and the MD coefficients agree with thatind does not account for internal vibrations of water. How-
obtained from the fit of the atomic CF's, despite the smalleyer, from the point of view of this transport parameter, it

contribution of the hydrogen compared to that of the oxygenseems likely that internal vibrations can be safely neglected,
As an example, we show in Fig. 15 the MD results of 35 we found for librations.

E. Free-streaming limits

Fu(kt), Fap(k,t), and Fu(k,t) together with that com-  The extension of this analysis to finités has shown a
puted according to Eq$2.23 and conservation laws, fdt  decrease oh as a function ofk, with a smooth transition
= 100K min- between th&k=0 and the finitek values, analogous to that

The Gaussian relevant to the hydrogen dynamics can onlgbserved for generalized viscositie.
be seen irFZ(k,t), being much too small in the other two  Generalized thermodynamic properties have been calcu-
CF’s. This Gaussian is about three times narrower than thaated as the second principal contribution of this work. We
of the oxygen, which is very similar to that of the center of found that the initial values of the density-energy and
mass. Howevelfﬁlit)(k,t) is proportional to the fourth time energy-energy correlation functions,5(k,t) and Fa3(k,t),
derivative ofF {37(k,t), because of conservation law, so thatwhen properly normalized, contain a collective part which is
the hydrogen term is multiplied b2, which is of order given by the structure factor of the liquid. The difference
100, and becomes comparable §5%) to the amplitude ©Observed in the& dependence of the molecular and atomic
corresponding to the oxygen motion. As a consequence, Kalues ofc,(k), h(k), a(k), andy(k) has been traced back

produces the inflection at0.004 ps, visible inF&Y(k,t), {0 rotational terms typically in the frequency range around 45

Figs. 15c) and 15d). THz, cage mode. On the other hand, the limit behavior of
these functions fok=0 is independent of the molecular or
atomic definition, while in the region up to5 A~ the po-
tential and kinetic contribution to, e.d(k) reflects the peak
This study has mainly been devoted to the analysis oposition of the partial structure functions, mainly for the OH
thermal conductivity of water at normal temperature and in and HH pairs.
the supercooled region, 255 K. The values obtained with the The set of results presented extends the knowledge of the
SPC/E model are in good agreement with the experimentdiehavior of the SPC/E model of water to a number of col-

IV. SUMMARY AND CONCLUSIONS
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lective dynamical properties and to the supercooled regionyhich the enhanced dipole moments of the models only de-
allowing also a comparison with the corresponding results okcribe in an average way, with parameters optimized on
the TIP4P potential. Overall, it appears that the SPC/E watgproperties at normal temperature.

model gives results in better agreement with experimental Finally, we mention a very accurate MD study of thermal
data than TIP4P. The extent of improvement varies from &onductivity of Lennard-Jones fluid by Vogelsang, Hoheisel,
property to another, being larger for, e.g., diffusion and di-and Ciccotti[29], where the effect of truncation of potential
electric properties and smaller for thermal conductivity. Agng averaging procedure on the results is examined. The re-
feature shared by both models is the insufficient slowings,its show a small number dependence, that, if extended to
down of the dynamics at low temperature, again more apparsr gata, would further improve the agreement with the ex-
ent for TIP4P than for SPC/E. This is manifested by theperimental values. In addition, this studg9] proves that

e I e perco0le e moneaquibrium{30] and equibri D lead 1 vaes o
Y, d ermal conductivity in quantitative agreement.

the temperature dependence of nonadditive interactions,
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